Saturday 11 November 2017

Beskriv The Forskjellene Mellom Flytte Gjennomsnitt Og Eksponensiell Utjevnings


Eksponensiell utjevning forklart. Kopier Copyright. Innhold på InventoryOps er opphavsrettsbeskyttet og er ikke tilgjengelig for republisering. Når folk først møter begrepet eksponentiell utjevning, tror de kanskje det høres ut som et helvete med mye utjevning. uansett utjevning er. De begynner deretter å forestille seg en komplisert matematisk beregning som sannsynligvis krever en grad i matematikk å forstå, og håper det er en innebygd Excel-funksjon tilgjengelig hvis de noensinne trenger å gjøre det. Virkeligheten av eksponensiell utjevning er langt mindre dramatisk og langt mindre traumatisk. Sannheten er at eksponensiell utjevning er en veldig enkel beregning som gir en ganske enkel oppgave. Det har bare et komplisert navn fordi det som teknisk sett skjer som følge av denne enkle beregningen, er faktisk litt komplisert. For å forstå eksponensiell utjevning, bidrar det til å starte med det generelle begrepet utjevning og et par andre vanlige metoder som brukes til å oppnå glatting. Hva er utjevning Utjevning er en svært vanlig statistisk prosess. Faktisk møter vi jevnlig jevne data i ulike former i vårt daglige liv. Når du bruker et gjennomsnitt for å beskrive noe, bruker du et glatt nummer. Hvis du tenker på hvorfor du bruker et gjennomsnitt for å beskrive noe, vil du raskt forstå begrepet utjevning. For eksempel har vi nettopp opplevd den varmeste vinteren på rekord. Hvordan kan vi kvantifisere dette Vel, vi begynner med datasett av de daglige høye og lave temperaturene for perioden vi kalder Vinter for hvert år i innspilt historie. Men det gir oss en mengde tall som hopper rundt ganske mye (det er ikke som hver dag i vinter var varmere enn tilsvarende dager fra alle tidligere år). Vi trenger et nummer som fjerner alt dette hopper rundt fra dataene, slik at vi lettere kan sammenligne en vinter til den neste. Fjerning av hopping rundt i dataene kalles glatting, og i dette tilfellet kan vi bare bruke et enkelt gjennomsnitt for å oppnå glatting. I etterspørselsoversikt bruker vi utjevning for å fjerne tilfeldig variasjon (støy) fra vår historiske etterspørsel. Dette gjør at vi bedre kan identifisere etterspørselsmønstre (primært trend og sesongmessighet) og etterspørselsnivåer som kan brukes til å estimere fremtidig etterspørsel. Støyen i etterspørsel er det samme konseptet som den daglige hoppingen rundt temperaturdataene. Ikke overraskende, den vanligste måten folk fjerner støy fra etterspørselshistorien, er å bruke en enkel gjennomsnittlig, nærmere bestemt et glidende gjennomsnitt. Et glidende gjennomsnitt bruker bare et forhåndsdefinert antall perioder for å beregne gjennomsnittet, og disse periodene beveger seg når tiden går. Hvis jeg for eksempel bruker et 4 måneders glidende gjennomsnitt, og i dag er 1. mai, bruker jeg et gjennomsnitt av etterspørselen som skjedde i januar, februar, mars og april. 1. juni bruker jeg etterspørsel fra februar, mars, april og mai. Vektet glidende gjennomsnitt. Ved bruk av et gjennomsnitt bruker vi samme vekt (vekt) til hver verdi i datasettet. I 4 måneders glidende gjennomsnitt representerte hver måned 25 av glidende gjennomsnitt. Når du bruker etterspørselshistorie for å projisere fremtidig etterspørsel (og spesielt fremtidig trend), er det logisk å komme til den konklusjonen at du vil at nyere historie har større innvirkning på prognosen din. Vi kan tilpasse vår gjennomsnittlige beregning for å bruke ulike vekter til hver periode for å få våre ønskede resultater. Vi uttrykker disse vektene som prosentandeler, og summen av alle vekter for alle perioder må legge opp til 100. Derfor, hvis vi bestemmer oss for å søke 35 som vekten for nærmeste periode i vårt 4 måneders veide glidende gjennomsnitt, kan vi trekke 35 fra 100 for å finne at vi har 65 igjen å dele over de andre 3 periodene. For eksempel kan vi ende opp med en veiing på henholdsvis 15, 20, 30 og 35 i de 4 månedene (15 20 30 35 100). Eksponensiell utjevning. Hvis vi går tilbake til konseptet med å legge vekt på den siste perioden (for eksempel 35 i det forrige eksempelet) og sprer gjenværende vekt (beregnet ved å trekke den siste tidsvekten på 35 fra 100 til 65), har vi de grunnleggende byggeblokkene for vår eksponentielle utjevningsberegning. Den kontrollerende inngangen til eksponensiell utjevningsberegning er kjent som utjevningsfaktoren (også kalt utjevningskonstanten). Den representerer i hovedsak vektingen som er brukt på de siste periodene etterspørselen. Så, hvor vi brukte 35 som vekten for den siste perioden i den vektede glidende gjennomsnittlige beregningen, kunne vi også velge å bruke 35 som utjevningsfaktor i vår eksponensielle utjevningsberegning for å få en lignende effekt. Forskjellen med eksponensiell utjevningsberegning er at i stedet for at vi også må finne ut hvor mye vekt som skal gjelde for hver tidligere periode, blir utjevningsfaktoren brukt til å automatisk gjøre det. Så her kommer eksponentiell del. Hvis vi bruker 35 som utjevningsfaktor, vil vekten av de siste perioder etterspørselen bli 35. Vektingen av de neste siste perioder krever (perioden før den siste) vil være 65 av 35 (65 kommer fra å trekke 35 fra 100). Dette tilsvarer 22,75 vekting for den perioden hvis du gjør matematikken. De neste siste perioder etterspørselen vil være 65 av 65 av 35, som tilsvarer 14,79. Perioden før det vil bli vektet som 65 av 65 av 65 av 35, som tilsvarer 9,61, og så videre. Og dette går videre gjennom alle dine tidligere perioder helt tilbake til begynnelsen av tiden (eller det punktet du begynte å bruke eksponensiell utjevning for det aktuelle elementet på). Du tenker nok det som ser ut som en masse matte. Men skjønnheten i eksponensiell utjevningsberegning er at i stedet for å beregne for hver tidligere periode hver gang du får en ny periode etterspørsel, bruker du bare utgangen av eksponensiell utjevningsberegning fra forrige periode til å representere alle tidligere perioder. Er du forvirret ennå Dette vil gi mer mening når vi ser på den faktiske beregningen Vanligvis refererer vi til utgangen av eksponensiell utjevningsberegning som neste periodesprognose. I virkeligheten trenger den endelige prognosen litt mer arbeid, men i forbindelse med denne spesifikke beregningen vil vi referere til det som prognosen. Eksponensiell utjevningsberegning er som følger: De siste periodene krever multiplikasjon med utjevningsfaktoren. PLUS De siste periodene prognosen multiplisert med (en minus utjevningsfaktoren). D siste perioder krever S utjevningsfaktoren representert i desimalform (så 35 ville bli representert som 0,35). F de siste periodene prognosen (utgangen av utjevningsberegningen fra forrige periode). ELLER (antar en utjevningsfaktor på 0,35) (D 0,35) (F 0,65) Det blir ikke mye enklere enn det. Som vi kan se, er alt vi trenger for datainnganger her de siste perioder etterspørselen og de siste perioder som forventes. Vi bruker utjevningsfaktoren (vekting) til de siste periodene, krever samme måte som vi ville i den veide gjennomsnittlige beregningen. Vi bruker deretter den gjenværende vekten (1 minus utjevningsfaktoren) til de siste periodene. Siden de siste prognoseperiodene ble opprettet basert på forrige perioder, var etterspørselen og de foregående periodene prognosen, som var basert på etterspørselen etter perioden før og prognosen for perioden før det, som var basert på etterspørselen etter perioden før det og prognosen for perioden før det, som var basert på perioden før det. Vel, du kan se hvordan alle tidligere perioder etterspørsel er representert i beregningen uten å faktisk gå tilbake og omberegne noe. Og det var det som kjørte den opprinnelige populariteten til eksponensiell utjevning. Det var ikke fordi det gjorde en bedre jobb med utjevning enn vektet glidende gjennomsnitt, det var fordi det var enklere å regne ut i et dataprogram. Og fordi du ikke trengte å tenke på hva vekting å gi tidligere perioder eller hvor mange tidligere perioder å bruke, som du ville i vektet glidende gjennomsnitt. Og fordi det bare hørtes kjøligere enn vektet glidende gjennomsnitt. Faktisk kan det hevdes at vektet glidende gjennomsnitt gir større fleksibilitet siden du har mer kontroll over vektingen av tidligere perioder. Virkeligheten er at noen av disse kan gi respektverdige resultater, så hvorfor ikke gå med enklere og kjøligere lyd. Eksponensiell utjevning i Excel Leter du se hvordan dette faktisk ville se i et regneark med ekte data. Kopier Copyright. Innhold på InventoryOps er opphavsrettsbeskyttet og er ikke tilgjengelig for republisering. I figur 1A har vi et Excel-regneark med 11 ukers etterspørsel, og en eksponensielt jevn prognose beregnet ut fra den etterspørselen. Ive brukte en utjevningsfaktor på 25 (0,25 i celle C1). Den nåværende aktive cellen er Cell M4 som inneholder prognosen for uke 12. Du kan se i formellinjen, formelen er (L3C1) (L4 (1-C1)). Så de eneste direkte inngangene til denne beregningen er forutgående perioder etterspørsel (Cell L3), forrige perioder prognose (Cell L4) og utjevningsfaktoren (Cell C1, vist som absolutt cellereferanse C1). Når vi starter en eksponensiell utjevningsberegning, må vi manuelt plukke verdien for den første prognosen. Så i Cell B4, i stedet for en formel, skrev vi bare etterspørselen fra samme periode som prognosen. I Cell C4 har vi vår første eksponensielle utjevningsberegning (B3C1) (B4 (1-C1)). Vi kan da kopiere Cell C4 og lime den inn i Cells D4 til M4 for å fylle resten av våre prognose celler. Du kan nå dobbeltklikke på en hvilken som helst prognosecelle for å se at den er basert på de foregående periodene forutsatt celle og forrige perioder krever celle. Så arver hver etterfølgende eksponensiell utjevningsberegning utgangen av den forrige eksponensielle utjevningsberegningen. Det er hvordan hver tidligere perioder etterspørsel er representert i den siste perioderegningen, selv om denne beregningen ikke direkte refererer til tidligere perioder. Hvis du vil ha lyst, kan du bruke Excels spore presenter funksjon. For å gjøre dette, klikk på Cell M4, deretter på verktøylinjen for bånd (Excel 2007 eller 2010), klikk på Formler-fanen, og klikk deretter Sporprecedenter. Det trekker tilkoblingslinjer til det første nivået av precedenter, men hvis du fortsetter å klikke på Trace Precedents, vil det trekke kontaktlinjer til alle tidligere perioder for å vise deg de arvede forhold. Nå kan vi se hva eksponensiell utjevning gjorde for oss. Figur 1B viser et linjediagram over vår etterspørsel og prognose. Du ser hvordan den eksponentielt glatte prognosen fjerner det meste av den ujevnheten (hoppingen rundt) fra den ukentlige etterspørselen, men klarer fortsatt å følge det som synes å være en oppadgående trend i etterspørselen. Du vil også merke at den glatte prognoselinjen har en tendens til å være lavere enn etterspørselslinjen. Dette er kjent som trendlag og er en bivirkning av utjevningsprosessen. Hver gang du bruker utjevning når en trend er til stede, vil prognosen din ligge etter trenden. Dette gjelder for enhver utjevningsteknikk. Faktisk, hvis vi skulle fortsette dette regnearket og begynne å legge inn lavere etterspørselsnumre (å gjøre en nedadgående trend), ser du etterspørselslinjen slipp, og trendlinjen beveger seg over den før du begynner å følge nedadgående trenden. Det er derfor jeg tidligere nevnte produksjonen fra eksponentiell utjevningsberegning som vi kaller en prognose, fortsatt trenger litt mer arbeid. Det er mye mer å prognose enn å bare utjevne støtene i etterspørselen. Vi må gjøre ytterligere tilpasninger for ting som trendlag, sesongmessighet, kjente hendelser som kan påvirke etterspørselen, etc. Men alt som er utenfor rammen av denne artikkelen. Du vil sannsynligvis også komme inn i begreper som dobbel eksponensiell utjevning og tredobbelt eksponensiell utjevning. Disse begrepene er litt misvisende siden du ikke re-utjevner etterspørselen flere ganger (du kan hvis du vil, men det er ikke poenget her). Disse betingelsene representerer bruk av eksponensiell utjevning på ytterligere elementer i prognosen. Så med enkel eksponensiell utjevning, utjevner du grunnbehovet, men med dobbel eksponensiell utjevning utjevner du basen etterspørsel og trenden, og med tredoble eksponensiell utjevning utjevner du basen etterspørsel pluss trenden pluss sesongmessigheten. Det andre vanligste spørsmålet om eksponensiell utjevning er hvor får jeg utjevningsfaktoren min? Det er ikke noe magisk svar her, du må teste forskjellige utjevningsfaktorer med dine etterspørseldata for å se hva som gir deg de beste resultatene. Det er beregninger som automatisk kan angi (og endre) utjevningsfaktoren. Disse faller under termen adaptiv utjevning, men du må være forsiktig med dem. Det er rett og slett ikke et perfekt svar, og du bør ikke blindt implementere noen beregning uten grundig testing og utvikle en grundig forståelse av hva denne beregningen gjør. Du bør også kjøre om-scenarier for å se hvordan disse beregningene reagerer på etterspørselsendringer som kanskje ikke eksisterer i etterspørseldataene du bruker for testing. Dataeksemplet jeg brukte tidligere er et veldig godt eksempel på en situasjon der du virkelig trenger å teste noen andre scenarier. Det bestemte dataeksemplet viser en noe konsistent oppadgående trend. Mange store selskaper med svært kostbar prognoseprogramvare fikk store problemer i den ikke så fjerne fortiden da deres programvareinnstillinger som var tweaked for en voksende økonomi, ikke reagerte bra da økonomien begynte å stagnere eller krympe. Ting som dette skjer når du ikke forstår hva dine beregninger (programvare) faktisk gjør. Hvis de forsto deres prognosesystem, ville de ha visst at de trengte å hoppe inn og endre noe når det var plutselige dramatiske endringer i sin virksomhet. Så det har du det grunnleggende om eksponensiell utjevning forklart. Ønsker du å vite mer om bruk av eksponensiell utjevning i en faktisk prognose, sjekk ut boken Inventory Management Explained. Kopier Copyright. Innhold på InventoryOps er opphavsrettsbeskyttet og er ikke tilgjengelig for republisering. Dave Piasecki. er eieroperatør av Inventory Operations Consulting LLC. et konsulentfirma som tilbyr tjenester knyttet til lagerstyring, materialhåndtering og lageroperasjoner. Han har over 25 års erfaring i driftsledelse og kan nås gjennom sin nettside (inventoryops), hvor han opprettholder tilleggsinformasjon. Mine forretningstidsseriemetoder Tidsseriemetoder er statistiske teknikker som benytter historiske data akkumulert over en tidsperiode. Tidsseriemetoder antar at det som har skjedd tidligere, vil fortsette å skje i fremtiden. Som navnet serier antyder, relaterer disse metodene prognosen til bare en faktor - tid. De inkluderer glidende gjennomsnitt, eksponensiell utjevning og lineær trendlinje, og de er blant de mest populære metodene for kortvarig prognose blant service - og produksjonsbedrifter. Disse metodene forutsetter at identifiserbare historiske mønstre eller trender for etterspørsel over tid vil gjenta seg. Flytende gjennomsnitt En prognos for tidsserier kan være så enkel som bruk av etterspørsel i den nåværende perioden for å forutse etterspørselen i neste periode. Dette kalles noen ganger en naiv eller intuitiv prognose. 4 For eksempel, hvis etterspørselen er 100 enheter denne uken, er prognosen for neste ukes etterspørsel 100 enheter dersom etterspørselen viser seg å være 90 enheter i stedet, så er etterspørselen etter følgende uker 90 enheter, og så videre. Denne typen prognosemetode tar ikke hensyn til historisk etterspørselsadferd som den bare bygger på etterspørsel i den nåværende perioden. Det reagerer direkte på de normale, tilfeldige bevegelsene i etterspørselen. Den enkle glidende gjennomsnittsmetoden bruker flere etterspørselsverdier i løpet av den siste tiden til å utvikle en prognose. Dette har en tendens til å dempe eller glatte ut, tilfeldige økninger og reduksjoner av en prognose som bare bruker en periode. Det enkle glidende gjennomsnittet er nyttig for å forutse etterspørselen som er stabil og viser ikke noen uttalt etterspørselsadferd, for eksempel en trend eller sesongmessig mønster. Flytende gjennomsnitt beregnes for bestemte perioder, for eksempel tre måneder eller fem måneder, avhengig av hvor mye forecasteren ønsker å glatte etterspørseldataene. Jo lengre glidende gjennomsnittsperiode, jo jevnere blir det. Formelen for beregning av det enkle glidende gjennomsnittet er å beregne et enkelt bevegelige gjennomsnitt. Instant Paper Clip Office Supply Company selger og leverer kontorrekvisita til bedrifter, skoler og byråer innen en radius på 50 kilometer fra lageret. Kontorforsyningsvirksomheten er konkurransedyktig, og evnen til å levere bestillinger raskt er en faktor for å få nye kunder og holde gamle. (Kontorene bestiller vanligvis ikke når de går lite på forsyninger, men når de går helt tom. Som et resultat trenger de straks sine bestillinger.) Sjefen for selskapet ønsker å være sikre nok drivere og kjøretøyer er tilgjengelige for å levere bestillinger omgående og De har tilstrekkelig lagerbeholdning på lager. Derfor ønsker lederen å kunne regne ut antall ordrer som vil skje i løpet av den neste måneden (dvs. for å prognose etterspørselen etter leveranser). Fra registreringer av leveringsordrer har ledelsen akkumulert følgende data de siste 10 månedene, hvorfra den vil beregne 3- og 5-måneders glidende gjennomsnitt. La oss anta at det er slutten av oktober. Prognosen som følge av enten 3- eller 5-måneders glidende gjennomsnitt er typisk for neste måned i sekvensen, som i dette tilfellet er november. Det bevegelige gjennomsnittet beregnes fra etterspørselen etter ordre for de foregående 3 månedene i sekvensen i henhold til følgende formel: 5-måneders glidende gjennomsnitt beregnes fra de foregående 5 månedene av etterspørseldata som følger: 3- og 5-måneders Flytte gjennomsnittlige prognoser for alle månedene av etterspørseldata er vist i følgende tabell. Faktisk vil bare prognosen for november basert på den siste månedlige etterspørselen bli brukt av lederen. De tidligere prognosene for tidligere måneder tillater oss imidlertid å sammenligne prognosen med den faktiske etterspørselen for å se hvor nøyaktig prognosemetoden er - det vil si hvor bra det gjør. Tre - og fem-måneders gjennomsnitt Både glidende gjennomsnittlige prognoser i tabellen ovenfor har en tendens til å utjevne variabiliteten i de faktiske dataene. Denne utjevningseffekten kan observeres i følgende figur hvor 3-måneders og 5-måneders gjennomsnitt er lagt på en graf av de opprinnelige dataene: Det 5-måneders glidende gjennomsnittet i foregående figur utjevner svingninger i større grad enn 3 måneders glidende gjennomsnitt. Imidlertid gjenspeiler 3-måneders gjennomsnittet de nyeste dataene som er tilgjengelige for kontorforvalteren. Generelt er prognoser som bruker lengre periode glidende gjennomsnitt, langsommere å reagere på de siste endringene i etterspørselen enn de som ble gjort ved hjelp av glidende gjennomsnitt for kortere periode. De ekstra dataperiodene demper hastigheten som prognosen svarer på. Etablering av riktig antall perioder som skal brukes i en bevegelig gjennomsnittlig prognose krever ofte litt prøve-og-feil-eksperimentering. Ulempen med den bevegelige gjennomsnittlige metoden er at den ikke reagerer på variasjoner som oppstår av en grunn, for eksempel sykluser og sesongmessige effekter. Faktorer som forårsaker endringer blir generelt ignorert. Det er i utgangspunktet en mekanisk metode som gjenspeiler historiske data på en konsistent måte. Den glidende gjennomsnittlige metoden har imidlertid fordelen av å være enkel å bruke, rask og relativt billig. Generelt kan denne metoden gi en god prognose på kort sikt, men det bør ikke presses for langt inn i fremtiden. Veidende Flytende Gjennomsnitt Den bevegelige gjennomsnittlige metoden kan justeres for å bedre reflektere svingninger i dataene. I den vektede glidende gjennomsnittlige metoden blir vektene tilordnet de nyeste dataene i henhold til følgende formel: Etterspørseldataene for PM Computer Services (vist i tabellen for eksempel 10.3) ser ut til å følge en økende lineær trend. Selskapet ønsker å beregne en lineær trendlinje for å se om den er mer nøyaktig enn eksponensiell utjevning og justerte eksponensielle utjevningsprognoser utviklet i eksempler 10.3 og 10.4. Verdiene som kreves for de minste kvadratberegninger er som følger: Ved bruk av disse verdiene beregnes parametrene for den lineære trendlinjen som følger: Derfor er den lineære trendlinjekvasjonen å beregne en prognose for periode 13, la x 13 i lineær trendlinje: Følgende graf viser den lineære trendlinjen sammenlignet med de faktiske dataene. Treningslinjen ser ut til å reflektere nøye de faktiske dataene - det vil si å være en god form - og dermed være en god prognosemodell for dette problemet. En ulempe med den lineære trendlinjen er imidlertid at den ikke vil tilpasse seg en endring i trenden, da de eksponentielle utjevningsprognosene vil det vil si det antas at alle fremtidige prognoser vil følge en rett linje. Dette begrenser bruken av denne metoden til en kortere tidsramme der du kan være relativt sikker på at trenden ikke vil endre seg. Seasonal Adjustments Et sesongmessig mønster er en repeterende økning og nedgang i etterspørselen. Mange etterspørselsprodukter viser sesongmessig oppførsel. Klærsalg følger årlige sesongmønstre, hvor etterspørselen etter varme klær øker om høsten og vinteren og faller om våren og sommeren ettersom etterspørselen etter kjøligere klær øker. Etterspørselen etter mange detaljhandler, inkludert leker, sportsutstyr, klær, elektroniske apparater, skinke, kalkuner, vin og frukt, øker i løpet av høytiden. Krav til hilsekort øker i forbindelse med spesielle dager som Valentinsdag og Morsdag. Sesongmønstre kan også forekomme på en månedlig, ukentlig eller daglig basis. Noen restauranter har høyere etterspørsel om kvelden enn til lunsj eller i helgene i motsetning til hverdager. Trafikk - dermed salg - i kjøpesentre plukker opp fredag ​​og lørdag. Det finnes flere metoder for å reflektere sesongmessige mønstre i en tidsserie-prognose. Vi vil beskrive en av de enklere metodene ved å bruke en sesongfaktor. En sesongfaktor er en tallverdi som multipliseres med den normale prognosen for å få en sesongjustert prognose. En metode for å utvikle en etterspørsel etter sesongmessige faktorer er å dele etterspørselen etter hver sesongperiode etter total årlig etterspørsel, i henhold til følgende formel: De resulterende sesongfaktorene mellom 0 og 1,0 er faktisk den del av den totale årlige etterspørselen som tildeles hver sesong. Disse sesongmessige faktorene multipliseres med den årlige forventede etterspørselen for å gi justerte prognoser for hver sesong. Beregner en prognose med sesongjusteringer. Wishbone Farms vokser kalkuner for å selge til et kjøttproduserende selskap gjennom hele året. Men høysesongen er åpenbart i løpet av fjerde kvartal av året, fra oktober til desember. Wishbone Farms har opplevd etterspørselen etter kalkuner de siste tre årene vist i følgende tabell: Fordi vi har tre års etterspørseldata, kan vi beregne sesongfaktorene ved å dele totalt kvartalsbehov for de tre årene etter total etterspørsel i alle tre år : Deretter vil vi multiplisere den forventede etterspørselen etter neste år, 2000, ved hver sesongfaktor for å få forventet etterspørsel etter hvert kvartal. For å oppnå dette trenger vi en etterspørselsprognose for 2000. I dette tilfellet, siden etterspørseldataene i tabellen ser ut til å vise en generelt økende trend, beregner vi en lineær trendlinje for de tre årene med data i tabellen for å bli tøffe prognose estimat: Prognosen for 2000 er således 58,17, eller 58,170 kalkuner. Ved å bruke denne årlige prognosen for etterspørsel er de sesongjusterte prognosene, SF i, for 2000 Sammenligning av disse kvartalsprognosene med de faktiske etterspørselsverdiene i tabellen, synes de å være relativt gode prognoser som reflekterer både sesongvariasjoner i dataene og den generelle oppadgående trenden. 10-12. Hvordan er den bevegelige gjennomsnittlige metoden lik eksponensiell utjevning 10-13. Hvilken effekt på eksponensiell utjevningsmodell vil øke utjevningskonstanten har 10-14. Hvordan skiller den justerte eksponensielle utjevningen seg fra eksponensiell utjevning 10-15. Hva bestemmer valget av utjevningskonstanten for trend i en justert eksponensiell utjevningsmodell 10-16. I kapitteleksemplene for tidsseriemetoder ble startprognosen alltid antatt å være den samme som den faktiske etterspørselen i første periode. Foreslå andre måter at startprognosen kan utledes ved faktisk bruk. 10-17. Hvordan er lineær trendlinjeprognosemodell forskjellig fra en lineær regresjonsmodell for prognoser 10-18. Av tidsseriemodellene som presenteres i dette kapittelet, inkludert det bevegelige gjennomsnittlige og vektede glidende gjennomsnittet, eksponensiell utjevning og justert eksponensiell utjevning, og lineær trendlinje, hvilken anser du best Hvorfor 10-19. Hvilke fordeler har justert eksponensiell utjevning over en lineær trendlinje for forventet etterspørsel som viser en trend 4 K. B. Kahn og J. T. Mentzer, Forecasting in Consumer and Industrial Markets, Journal of Business Forecasting 14, nr. 2 (Sommer 1995): 21-28.What039s forskjellen mellom glidende gjennomsnitt og vektet glidende gjennomsnitt. Et 5-års glidende gjennomsnitt, basert på prisene ovenfor, ville bli beregnet ved hjelp av følgende formel: På grunnlag av ligningen ovenfor ble gjennomsnittsprisen over perioden oppført ovenfor var 90,66. Bruk av bevegelige gjennomsnitt er en effektiv metode for å eliminere sterke prisfluktuasjoner. Nøkkelbegrensningen er at datapunkter fra eldre data ikke veier noe annerledes enn datapunkter nær begynnelsen av datasettet. Dette er hvor vektede glidende gjennomsnitt kommer til spill. Veidede gjennomsnitt gir tyngre vekting til mer gjeldende datapunkter siden de er mer relevante enn datapunkter i den fjerne fortiden. Summen av vektingen skal legge til opptil 1 (eller 100). Når det gjelder det enkle glidende gjennomsnittet, er vektene fordelt like mye, og derfor er de ikke vist i tabellen ovenfor. Sluttpris på AAPL

No comments:

Post a Comment